
. .

Summary
PVCS Version Manager is considered as one of the leading
versioning tools that offers complete versioning control. But
when building, deploying and tracking the life-cycle of your
software applications, you can lose sight of your code as
PVCS Version Manager typically does not cover these areas.
Many PVCS Version Manager users would therefore like to
evolve to this next level, but they want to keep using their
favorite versioning tool. The integration between PVCS
Version Manager and SCM4ALL solves this problem by
offering a unique and flexible process-centric software
change management solution for both local and distributed
development teams, keeping the impact on and the tool-
specific training needs of the software engineering team to a
minimum. SCM4ALL continuous where PVCS Version
Manager stops and helps project teams to further automate
the complete software lifecycle management process, com-
bining both continuous integration and life-cycle manage-
ment, offering a single point of control and delivering sup-
port for your build, deploy, release and software life-cycle
management and approval processes.

“Global Software
Change

Management
for PVCS

Version Manager”

“Global Software
Change

Management
for PVCS

Version Manager”

Introduction
Software development, seen in a historical perspective, is a very
young discipline. In the early stages, software development was
seen as an art (the developer is always right, even if he was
wrong, and beauty won over effectiveness and efficiency), as it
was seen as supporting business objectives. In the recent decades
however, software development started to organize itself: initially
to make life easier for itself, finally to answer internal and exter-
nal driven productivity and compliancy needs.
Building a software solution involves many complex processes,
roles and deliverables, which need to be managed to fit together.
Streamlining these processes is a major effort, particularly when
there are many people involved. A truly comprehensive software
configuration management (SCM) solution manages not just the
simple versioning of your source code files it also facilitates
support for Continuous Integration, accurate and predictable
build management, provides the ability to deploy the end result as
well as offering approval processes and manages the complex
run-time dependencies of many applications today.

What does SCM comprise?
Although most developers are happy with just version manage-
ment, in today's world where users have become heavily involved
users, production people, auditors and compliance officers and
finally shareholders, compounded by the global context in which
we operate, we are faced with new challenges: offshore, virtual or
outsourced development to name just a few. We now need to
answer questions like who did what, where and when, and who
has control, what are the fall back options, and how to comply
with the new laws on corporate governance. These new require-
ments demand that SCM (Software Change Management or
version management in the narrower sense) not only keeps
versions of software code, but that it also offers developers inde-
pendent and controlled build management, deployment, life-
cycle management and approval mechanisms.
Every role within the organization has a different area of interest.
A developer wants to have early feedback on the code he commit-
ted in the trunk stream (Continuous Integration) and build the
project in his IDE with the correct latest sources and common
libraries. A project manager wants to have a clear overview of the
project status: is the latest code in the trunk buildable, do the unit
tests run successfully, what is in the QA phase, what is the current
production version?
Production operators prefer an automated deployment process,
where they can control the environment variables. Finally the
CIO and CEO of a corporation want to see an automated and
repeatable process with an audit trail.

2

3

Developer

IT Management

Production

Management/audit

Why Versioning? To keep track of the
changes

Safe storage of all
historic data

Easily revert to a
prior version

No loss of data

Why implement a
continuous
integration
process?

Concentrate on
developing software
Get early feedback on
committed code

Early feedback on code
quality
Find weak spots

Get high quality
production code

Fewer errors
Repeatable process
Faster and shorter
release cycle

Why have an
automated build?

No loss of valuable
time trying to build
manually

Allows to do more
builds
and gives rapid
feedback

Everything is
coordinated by a
script

Prevents mistakes

Why approval
management?

Improves
communication across
the project team

Control the evolution in
the different stages of
the life-cycle
Build in audit moments

Control
deployment to the
production servers

Traceability
Who authorized

Why have an
automated deploy?

Guarantee that
production will receive
the quality code that I
created

To speed up the
process and help
reduce errors

No manual
intervention
reduces risk

Increases the
possible release
cycle frequency and
productivity

Why rollback
process?

Have more time to fix
defects

Can always revert to
the latest good release

Refuse or
eliminate risk of
service outage

Ensure return to
exact prior state
Quickly resolve errors
in production

Why life-cycle
management?

No worries of building
code for the test or
production level

Have a clear view of
the development
process and status

Automate
production
deployment
Reduces rework

Answers questions of
Who, When, Why
and What occurred?

SCM is process driven and is composed of several steps: it starts with
versioning and finally ends with deployment. True Software Change
Management therefore comprises the following aspects:

Versioning
The first step is versioning. Versioning sources are a best practice,
which is considered evident for controlling the software development
process. Whenever people startup a new software project, setting up a
version control repository is the first step and is done even before the
first code is created. When you ask developers what they need, they
will answer you that a versioning tool like Serena® PVCS Version Man-
ager perfectly supports their needs, as it versions their code. Today
PVCS Version Manager is one of the most used versioning systems.

PVCS Version Manager interface
In general PVCS Version Manager is a commercial version
control system. That is, PVCS Version Manager manages files
and directories over time. A tree of files is placed into a central
repository. The repository is much like an ordinary file server,
except that it remembers every change ever made to your files
and directories. This allows you to recover older versions, or to
examine the history of how data changed. PVCS Version Man-
ager can access its repository across networks, which allows it to
be used by people on different pc’s. At some level, the ability for
various people to modify and manage the same set of data from
their respective locations fosters collaboration. Progress can
occur more quickly without the constraints of having a single
conduit through which all modifications must occur. And because
the work is versioned, you need not fear that quality is the trade-
off for replacing that conduit - if some incorrect change is made
to the data, just undo that change.
PVCS Version Manager offers complete versioning control to its
users, however it does not support all the other important phases
in the software development process, such as build, deploy and
life-cycle management, nor does it provide a traceable and audit-
able development process. That's where SCM4ALL comes into
play. The SCM4ALL PVCS Version Manager interface seam-
lessly integrates PVCS Version Manager's easy-to-use PC version
control within the SCM4ALL change management framework,
by offering automation, control and visibility throughout the
whole life-cycle, from managing a Continuous Integration build
close to the developers, to automating the deployment into test,
QA and production and organizing the related authentication and
approval processes. SCM4ALL allows you to ad these next steps
to PVCS Version Manager.

Automating Build Management
Build management orchestrates the complex software assembly,
testing and packaging processes that go into producing the prod-
uct executable. SCM4ALL ensures a controlled build process,
giving you the possibility to reuse existing build/test or deploy
scripts from leading scripting tools like Ant, Nant or Maven 2. It
enables you to automate, accelerate and simplify software builds
ensuring that your software applications get built the right way
every time.

4

5

 Getting the sources turned into a running system can
often be a complicated process involving compila-
tion, moving files around, loading schemas into data-
base, and so on.It is clear that these tasks should be
automated to run on a dedicated server, so that a
repeatable build process can be started as soon as
possible after the code-base in the versioning system
has been changed.

SCM4ALL complements PVCS Version Manager
with Continuous Integration support in different
ways: it is possible to add a post-commit hook script
in the PVCS Version Manager repository that will
create a build request each time code is committed in
a project controlled by SCM4ALL. Another way of
implementing Continuous Integration is by setting up
a schedule that will check after a predefined interval
if there are changes in the project code-base of the
PVCS Version Manager repository. SCM4ALL runs
a central server which can be placed on any RDBMS.
The server monitors the source code repository and
jumps into action when it notices changes (commits).
Its job is to check-out a full or incremental load of the
code base whenever any part of it changes, run the
build file and report on the results. What constitutes a
build can be completely user-tailored; normally, a
build is a full compile of all source files, running unit
tests and creating the deployment archive.

The SCM4ALL server monitors the PVCS Version
Manager repository and jumps into action when it
notices changes (commits). Then it will check-out a
full or incremental load of the code base, run the
build file and report on the results. What constitutes a
build can be completely user-tailored: typically a
build is a full compile of all source files, running unit
tests and packaging the build result so that it can be
deployed later in the life-cycle. Yet a build can also
only consist on a packaging process of documents, or
libraries (dll´s, jar´s, copybook´s, ..), or SCM4ALL
allows the definition of an unlimited number of build
environments within a level. Builds may be executed
on a local or remote system, in other words "Distrib-
uted Builds" are supported. When a build fails, the
responsible developers are notified and corrective
actions can be taken. After a successful build,
SCM4ALL tags the PVCR Version Manager reposi-
tory with a unique build number to identify the
sources that where involved in the build process: this
guarantees "source to load" synchronization in every
stage of the life-cycle. SCM4ALL also supports
sources that do not need any source to executable
transformation, like documents, include files etc.

Implementing Continuous
Integration
Continuous Integration is an extreme Programming
(XP) development practice where members of a team
integrate their work frequently; usually each person
commits their code changes at least once daily - lead-
ing to multiple integrations per day. Each integration
is verified by an automated build (preferably also
including unit tests and code checks) to detect
integration errors as quickly as possible such as, for
instance, a failing unit test. Early feedback on broken
builds or failed tests is very important since such
information will dramatically reduce the time to fix
such errors, and, consequently, will also cut down on
overall development time. It's obvious that it will take
a lot more time fixing code that was written a week
ago, compared to code that was just committed to the
version control repository only minutes ago.

Test & QA level
The development process does not end with the
integration build. The result must be tested on a QA
level, rebuilt with other compilers or operating
systems, deployed under different application serv-
ers, and tested on distinct versions of the underlying
application database. These are error-prone
processes and thus ideal candidates for automation.
This is the only way to guarantee that the code used
to create the build result is the same as the code
deployed and running in a test environment. During
the test you should identify the problems that also
might occur during production. It is therefore impor-
tant that your test environment is similar to the
production environment. If this is not the case, it's
difficult to predict what will happen in production.

SCM4ALL provides the build/release manager with
both a manually and/or automatically controlled
build/release process for building/rebuilding and
delivering applications independently of the logical
and physical environment.

Simplifying deployment
Traditional change management systems have
focused on activities close to the developer, such as
source code control, but few mechanisms were in
place to support software deployment activities. To
be able to know which build version of the applica-
tion must be retrieved from the build archive to
deploy onto the designated target platform you need
to automate the deployment of all your software
assets. When you automate the prior steps, it's obvi-
ous that the last and most important step in the devel-
opment life-cycle is also a controlled process:
deploy to production. The production environment
will probably resemble the test environments. How-
ever, you will not rebuild your application on the
production server, and there will be more audit, noti-
fication and authorization involved before code is
actually deployed.
SCM4ALL uniquely deploys applications through-
out your enterprise: an unlimited number of deploy
environments may be defined within a level, each
identifying a physical machine, being a Windows
server, Unix server or a Mainframe; a life-cycle may
contain multiple logical steps, these are the Test or
Production Levels.

6
Each deploy environment may be parameterized
with dynamic deploy properties, which can be
configured for allowing changes right before
promotion to the next level. SCM4ALL integrates
with intelligent scripting tools like Ant, NAnt and
Maven 2. This makes it possible to solve complex
deployment issues, like keeping life clustered serv-
ers, or synchronizing applications with their data-
base. SCM4ALL knows which version of the appli-
cation it must retrieve from its build archive and
deploys it (in parallel if necessary) to the required
target platform(s). SCM4ALL can also execute
deployments to the DMZ (behind the firewall),
using a number of secure communication protocols.

Streamline your approval
process
To improve the communication within the project
team it is advisable to set up approval and notifica-
tion processes for this last step of the life-cycle. It's a
good practice to notify project members that a deliv-
ery to production will happen. It's a better practice to
also setup an approval process before the production
deployment, so that production operators, QA people
and project management can audit and control this
important stage in the roll-out process. In SCM4ALL
it is possible to set up approval and notification
processes for every step in the life-cycle, improving
the communication within the project team.

Rollback
Even if you have a well planned and executed QA
and audit trail, from time-to-time things may go
wrong. Therefore it is not a luxury to ensure that
there is a way back, so that in the worst case scenario
production service levels are minimally disturbed.
SCM4ALL supports a well-defined and tested
rollback process, which will protect you from night-
mares like production shutdown.

7

Life-Cycle Management
Developing applications is not just about writing code. Once it has been
developed, code must be tested, approved and delivered to the live envi-
ronment. Depending on his\her profile, some users will expect their code
migration to the live environment to be complete as soon as possible
whereas for others it will only happen when the time is right. Therefore, a
correct software change workflow process must be in place to fulfill the
needs of the entire project team. SCM4ALL provides this assistance by
auditing what has changed, when it changed, who changed it and who
approved the change for promotion. SCM4ALL is both the glue that holds
together the various components and phases of the application life-cycle
and the oil that lubricates the smooth and efficient interaction of those
components. It delivers an automated workflow to drive a continuous flow
of activity through the development life-cycle and efficiently coordinate
and streamline development changes.

Conclusion
Extending PVCS Version Manager with Continuous Integration, Life-
Cycle Management and approval processes provides a flexible framework
for controlling and automating the compilation and distribution of
software release packages from level to level (stage to stage), site to site
and across networks. As well as facilitating versioning at object and stream
level, creating an automated routine of building and releasing objects.
With SCM4ALL you can guarantee the quality of the code and the deploy-
ment process and provide a traceable and auditable logging for each step
in the life cycle.
Final goal is a comprehensive end-to-end framework, where not only the
needs of the developers are met, but also the interests of all other stake-
holders.

Interfaces
You can use the SCM4ALL built-in interfaces to bridge to any of the lead-
ing versioning solutions, including IBM® Rational® ClearCase® (UCM
and Base), IBM® Rational® ClearCase® LT, Microsoft® Visual
SourceSafe®, Serena® PVCS Version Manager, CVS, Subversion.
SCM4ALL seamlessly integrates with these versioning systems, offering
you the freedom to use the IDE of your choice. It is even possible to setup
mixed environments, in which one project uses sources from different
versioning systems.
For more information, please visit: www.scm4all.com

© 2006 IKAN, the IKAN Development and SCM4ALL logos and names and all other IKAN product or service names are trademarks of IKAN
Software NV. All other trademarks are property of their respective owners.

European Headquarters
IKAN Development NV
Kardinaal Mercierplein 2
B-2800 Mechelen, Belgium
Tel : +32 15 797306
-
info@ikan.be
www.ikan.be

	pvcs1
	pvcs2
	pvcs3
	pvcs4
	pvcs5
	pvcs6
	pvcs7

